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Abstract 

Two new multisolution direct-methods procedures are 
described: MAGIC, which employs the magic-integer 
concept and YZARC which refines initially random sets 
of phases by a least-squares approach. Each procedure 
produces several sets of phases for a number of 
reflexions, usually in the range 35-100. These are then 
extended by the tangent formula but with the constraint 
that the basis phases are not allowed to change until the 
final cycle. It is shown that for difficult structures these 
methods, which deal simultaneously with many phase 
relationships, may have intrinsic advantages over the 
MUL TAN procedure. Examples of their use are given. 

Introduction 

For the solution of structures containing up to 70 or 80 
atoms in the asymmetric unit crystallographers are 
increasingly relying on the use of multisolution direct- 
methods computer programs, such as MULTAN or 
SHELX, and about one-half of all structures are now 
solved in this way. However, despite their many 
successes, these methods are fallible and one structure 
with, say, 25 independent atoms may be resistant to 
solution while a 50- or 60-atom problem may be solved 
in a single computer run. 

When a straightforward application of MULTAN is 
unsuccessful then the veteran user may try one or two 
ruses to persuade it to work; artificially halving or 
doubling the temperature factor is sometimes effi- 
cacious but any other device which causes the program 
to follow a different path is worth trying. 

Recently we have developed two new computer- 
based procedures which can be used in conjunction 
with the MULTAN 78 package and which have been 
successful for several structures when MULTAN itself 
has failed. One of these, designated MAGIC 78, is 
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closely modelled on that previously described by 
Declercq, Germain & Woolfson (1975)while the other, 
YZARC 78, uses the random-approach concept 
developed by Baggio, Woolfson, Declercq & Germain 
(1978). A brief description of these two procedures, 
and examples of their application, will now be given. 

MAGIC 78 

Most of the details of this procedure have already been 
described by Declercq et al. (1975) and they will not be 
repeated here. Briefly, one uses the magic-integer 
concept to find a number (typically 50-80) of trial sets 
of phases for 35-50 reflexions, extends each set by the 
FASTAN routine of MULTAN and then follows the 
MUL TAN pathway thereafter. 

In MAGIC 78 there is a small but, we believe, 
important modification involving the phase-extension 
process. The original magic-integer-determined phases, 
from which the phase extension is initiated, are not 
modified except in the final cycle of the application of 
the tangent formula. The reasons for this will be 
discussed later. 

The program is very straightforward to apply and 
the number of user-designated parameters is quite 
small. The use of suggested standard parameters and 
default values seems to detract little from the effective- 
ness of the method. 

Some applications of MAGIC 

For our first example we take a structure (unpublished) 
which is an extract of coral and was kindly provided by 
B. Tursch of the Universit6 Libre de Bruxelles. This we 
have code-named Tursch 5 and the basic data are: 
formula C15H2404, P212~2 ~, Z = 4, a = 19.625, b = 
8.616, c = 8.536 A. 
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A routine run of M U L T A N  78 was unsuccessful, 
giving fragments which could not be developed. 

For the MAGIC application nine primary reflexions 
were represented by the elements of {467} (xyz) and 
there were also 24 secondary reflexions. Because the 
CONVERGE routine of M U L T A N  fixed the enantio- 
morph with a general reflexion (restricted to two of the 
four possible quadrant values) this run of MAGIC took 
only three origin-defining reflexions of fixed value in the 
primary set. The method is not sensitive to the lack of 
definition of enantiomorph and the loss of one possible 
reflexion from the primary set did not seem to matter. 

The 36 reflexions of the combined primary and 
secondary sets were linked by 20 triple-phase relation- 
ships (other than the 24 giving secondary reflexions 
from primary) and a ~, map was calculated with these. 
The 80 (default value) highest peaks in the ~, map were 
translated into trial phases for the 33 reflexions (all, 
that is, except the origin-defining ones) and these were 
then refined by a parameter-shift method based on 
satisfying the available total of 44 relationships to the 
maximum possible extent. 

Each of the 80 phase sets was extended to 200 
phases by the use of the tangent formula and the 
M U L T A N  figures of merit were found. The E map 
corresponding to the highest combined figure of merit 
(CFOM) was calculated and the form of the line-printer 
plot, which clearly showed the molecule, is reproduced 
in Fig. 1. It is interesting to note that of the 80 sets of 
phases developed by MAGIC no less than 10 cor- 
responded to this correct solution. The computer time 
requirement was quite modest; the stage up to 
obtaining the 80 sets of 36 phases took 2 min 24 s and 
the phase extension to 200 phases 5 min 23 s. These 
times, and all subsequent times quoted, are for an IBM 
370/158 computer. 

For the second example we take the unpublished 
structure of 1-(1-hydroxycthyl)hexahelicene, C2sH200. 
The space group is P2,2,2~ with Z = 4 and a = 8.541, 
b = 14.100, c = 15.812 A. 
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Fig. 1. A reproduction of the MAGIC 78 line-printer output for the 
set of phases with highest CFOM (2.700) for Tursch 5. Full lines 
show the part of the structure given by the plot and the dashed 
line indicates a missing atom. Isolated numbers correspond to 
false peaks. The individual figures of merit were: ABSFOM = 
1-065, PSIZERO = 1.296 and RESID = 16-45. 

The origin and enantiomorph were fixed by four 
special reflexions and nine primary reflexions had 
phases represented by the elements of {457}(xyz). 
There were 21 secondary reflexions and 25 relation- 
ships contributing to the ~, map. The 50 highest peaks 
were selected and after parameter-shift refinement the 
50 sets of 34 phases were extended to 290 phases by 
the tangent formula. 

In this case the set of phases with an outstandingly 
high C F O M  (2.775) did not give the solution. On the 
basis of examining the individual figures of merit, as 
well as the CFOM,  four other phase sets were 
investigated. One gave the plot shown in Fig. 2. Two 
atoms are missing but otherwise the molecule is clearly 
shown. 

These two examples are typical of what is now a 
number of applications of MAGIC. No attempt has 
been made to compare MAGIC and M U L T A N  but the 
general impression has been formed that MA GIC is of 
comparable overall effectiveness. Certainly it can solve 
some structures which are not solved by a routine run 
of MUL TAN. 

YZARC 78 

In a paper by Baggio et al. (1978) it was shown that 
phases could be refined by applying least-squares tech- 
niques to a set of linear equations representing the 
triple-phase relationships. It was further shown that one 
could often 'refine' from a completely random set of 
phases to an essentially correct solution. These results 
and observations have been incorporated into a 
systematic procedure for solving crystal structures, the 
steps of which will now be described. 

(1) Assume that a routine run of the M U L T A N  
system has failed. 

2 3  

14 32 

Fig. 2. A reproduction of the MAGIC 78 line-printer output for the 
set of phases giving the structure of 1-(l-hydroxyethyl)hexa- 
helicene. All but two of the atoms in the structure are revealed. 
The individual figures of merit were: ABSFOM = 1.0554, 
PSIZERO = 232.1 (old version), RESID = 50.75 and CFOM = 
1.960. 
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(2) The bottom 100 reflexions in the C O N V E R G E  
map, and the associated relationships, constitute the 
system which is initially used to obtain trial sets of 
phases. This system of equations is set up in the matrix 
form 

A ¢ = b  (1) 

and the matrix (ArA) -~ is calculated. The actual 
number of reflexions may be chosen by the user, with 
100 as the default value. 

(3) By means of a pseudo-random number generator 
giving a uniform distribution in the range 0 to 1, M sets 
of 100 random phases (in cycles) are generated. Each 
set is refined by the iterative application of 

n = integral part (A~0 + c), (2) 

(0 = (ATA)-IAT(n + ~ -  e), (3) 

where e is a column vector whose elements are the 
constant-angle parts of the phase relationships as 
generated by M U L  TAN.  With a as the deviation (in the 
range 0.5 to - 0 . 5 )  of  each current estimate of a phase 
relationship from the nearest integer then 8 is the 
column vector with elements 4a 3. These 4c? terms 
provide a convenient way of weighting the individual 
equatiods in each cycle without calculating a new 
inverse matrix each time (Baggio et al., 1978). If there 
might be a problem in defining the enantiomorph then, 
after the refinement is completed with 4a 3, the 

0 

Ph 

26 35 

8 3 
29 

\ 

27 ~ 8  

~ 1  32 

(b) 

Fig. 3. (o) The form of the molecule of oxa[3.1.11propellane 4. (b) 
The YZARC solution with the highest CFOM. Peaks 22 and 31 
exactly overlapped on the line-printer output but, for clarity, they 
have been slightly separated here. The individual figures of merit 
were: ABSFOM = 1.152, PSlZERO = 1.217, RESID = 18.95 
and CFOM = 2.475. 

weighting term is replaced by cos -q l t (a ) / l o (a ) ]  x 
(sign a). The default action is to conclude the refine- 
ment in this way and it never seems to be harmful. 

(4) Extend each set of  phases by the tangent formula, 
only refining the initial phases in the final cycle. Then 
determine figures of merit and complete as with 
M U L  TAN.  

This program is, if anything, even more automatic 
than M A G I C  and is usually run with the default 
parameters. 

Some applications of YZARC 

Recently Y Z A R C  has been used to solve the structure 
of oxa[3.1.1 ]propellane 4, C 27H220 (Szeimies-Seebach, 
Szeimies, Van Meerssche, Germain & Declercq, 1979), 
the molecular form of which is illustrated in Fig. 3(a). 
The crystal data are: space group Cc, Z = 4, a = 
12.987, b = 10.025, c = 15.095 A, fl = 95.43 °. 
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Fig. 4. (a) The form of the molecule of sarcoglaucol. (b) The 
FZARC solution with the highest CFOM. The 13-atom fragment 
was eventually developed to the complete structure. The 
individual figures of merit were: ABSFOM = 0.911, PSIZERO 
= 189.2 (old version), RESID = 23.61 and CFOM = 2.255. 
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The bottom of the CONVERGENCE map gave 480 
relationships relating 100 retiexions. One hundred sets 
of random phases were generated and refined by the 
least-squares approach. These were then extended by 
application of the tangent formula to 212 phases. 

The set with the highest CFOM gave the plot shown 
in Fig. 3 (b) which revealed the complete structure. 

As a second example we shall take another extract 
from coral, sarcoglaucol (Fig. 4a), C2~H3004 (AI- 
bericci, Braekman, Daloze, Tursch, Declercq, Germain 
& Van Meerssche, 1978), space group P2~ with a = 
11.256, b = 14.180, c = 6.319 A, f l=  98.48 ° , Z  = 2. 

A routine run of M U L T A N  77 (the version available 
at that time) gave nothing recognizable although 
attempts were made to develop fragments from some E 
maps. The bottom of the CONVERGE map gave 550 
relationships for 100 phases. One hundred sets of 
random phases were generated and refined in 18 min 
2 s and then extended to 200 phases by F A S T A N  in 
another 5 min 3 s. The set with the highest CFOM 
(2.255) gave the 13-atom fragment shown in Fig. 4(b) 
which was easily extended to reveal the complete 
structure. 

These two examples are typical of several successful 
applications of YZARC. Once again no direct com- 
parison of efficiency with M U L T A N  has been made but 
we shall see that there are good reasons for thinking 
that it may have inherent advantages over the 
MUL TAN approach. 

General  c o m m e n t s  

It has previously been noted that, because of the use of 
tangent-formula phase refinement, some structures 
cannot be solved (Lessinger, 1976; Hull & Irwin, 
1978). Even a large set of correct phases fed into 
tangent-formula refinement can degenerate to a set 
which will not reveal the structure at all. A common 
end product of such abortive tangent-formula refine- 
ments is a set of phases giving rise to one or two very 
large peaks or a 'sum of two structures', i.e. the 
structure sought plus its own enantiomorph, which is 
usually undecipherable. 

The underlying processes of MAGIC and YZARC 
depend on the simultaneous treatment of a large 
number of triple-phase relationships. In selecting peaks 
from a ~, map it is likely that some may well correspond 
to sets of phases with poor enantiomorph dis- 
crimination, i.e. which give a sum of two structures, but 
others, or perhaps only one other, will correspond to 
almost correct phases with good enantiomorph dis- 
crimination. Similarly, in each cycle of refinement by 
the least-squares method in YZARC all phases change 
simultaneously. This gives much less tendency to 
switch from an enantiomorph-defining set of phases 
than does the tangent formula where phases are refined 

one at a time and a slow drift process is much more 
likely to take place. Any tendency to enantiomorph loss 
which may be present with the linear equations can be 
corrected (Baggio et al., 1978) and the modification of 
the tangent formula, as recommended by Hull & Irwin 
(1978), does as much for tangent-formula refinement. 

However, what we have established is that if tangent- 
formula refinement is carried out under the condition 
that a large group of almost correct enantiomorph- 
defining phases is kept fixed then refinement of the 
remainder will be consistent with the enantiomorph of 
the basis set. One final cycle of refinement in which the 
basis set is allowed to change will relax all the phases to 
better self consistency without affecting the enantio- 
morph definition. This is the procedure which we have 
used in both MAGIC and YZARC. What has been said 
about the effect of the fixed basis set in providing an 
anchor to prevent drift of phases and loss of enantio- 
morph will equally prevent drift to the one-or-two- 
large-peaks situation which is common with some 
space groups. 

There is yet another way in which the MAGIC and 
YZAR C procedures are improvements on MUL TAN. 
In the M U L T A N  process one begins with a small 
starting set of, perhaps, ten reflexions to which phase 
values are assigned. Then, via a convergence map, new 
phases are developed individually, each determined by 
a few, initially usually one, two, or three, phase relation- 
ships. For complicated structures these phase relation- 
ships may sometimes be rather poor and give a 
completely wrong pattern of relative phases. This may 
not only be due to individual randomly poor relation- 
ships; it sometimes seems that phase relationships 
conspire together in groups to lead one astray. For 
ergocalciferol, for example, a development of a con- 
vergence map by symbolic addition revealed no 
inconsistencies for a considerable way up the 
CONVERGE map, i.e. where there were two or more 
indications for a new phase they were identical. 
Nevertheless, the determined relative phases of the 
initial set were badly in error and subsequent tangent- 
formula refinement did nothing to rectify the damage. 
Where this occurs in MULTAN,  it is true for each and 
every starting point. M U L T A N  is then not so much a 
multiple-solution method as a multiple-wrong-solution 
method! 

The simultaneous use of many relationships, as in 
MAGIC and YZARC, obviates the danger of 
repeatedly developing wrong patterns. The statistical 
behaviour of a large number of relationships is fairly 
predictable, unlike that of the small number on which 
one depends at the beginning of the M U L T A N  phase- 
developing process. Of course, as has been previously 
mentioned, M U L T A N  can be persuaded to work by 
various devices such as artificially changing the 
temperature factor. This merely imposes a different 
pattern on phase development and may be regarded as 
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an inefficient and somewhat ad hoc way of applying the 
'random' principle. 

Although MULTAN,  MAGIC and YZARC use 
exactly the same information they do so sufficiently 
differently for it not to be true that the failure of one 
method implies that the other two must also fail. The 
use of any one of them on its own gives a fairly small 
failure rate but the use of all three, where necessary, 
should give a very much smaller failure rate. The 
programs MAGIC 78 and YZARC 78 (obtained from 
G. Germain at Louvain-la-Neuve) use all the com- 
ponents of M U L T A N  78 (obtained from P. Main at 
York). If the basic M U L T A N  technique is tried and 
fails then one has available data files with which a 
MAGIC or YZARC attempt at solution can im- 
mediately be made. It is our belief that the use of this 
complementary set of techniques will greatly reduce the 
risk of failure using multisolution direct methods. The 
way in which MAGIC and YZARC are used with the 
M U L T A N  system is shown in Fig. 5. 

The future 

We are at present attempting to develop algorithms 
which will enable, say, 5000 sets of 200 phases to be 
developed with the YZARC technique in a reasonable 
time. There are three approaches under consideration. 

(1) We are trying to speed up the phase-refinement 
algorithm by the use either of steepest-descents or of 
parameter-shift methods. The potential gains here seem 
to be limited to perhaps a factor between two and four 
in time but there are also losses in refinement efficiency 
which may cancel some of the gain. Another develop- 
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Fig. 5. A flow diagram showing how MAGIC and YZARC are 
used in conjunction with MULTAN. 

ment is the speeding up of the tangent-formula phase- 
development process. Here we are planning to sacrifice 
accuracy for speed but still to have sufficient accuracy 
to recognize a subset of potentially correct sets of 
phases which may then be redeveloped or refined by the 
existing slower but more accurate process. Approaches 
under this head are designed to improve the speed of 
the method when using a main-frame time-sharing 
computer where there are practical limits on the 
amount of CPU time which may be used. 

(2) The YZARC process will eventually be program- 
ed to run on an array processor. This will greatly 
speed up all the matrix operations and may make the 
goal of developing 5000 sets of 200 phases feasible in a 
reasonable time. However, at present, such a develop- 
ment will be of little benefit to the general crystallo- 
graphic community with limited access to array 
processors. 

(3) We are contemplating the design of a mini- 
computer version of YZARC. A dedicated mini- 
computer, with its main function as a structure-solving 
device, could run for 50 h or even more to solve a 
difficult structure. A machine used solely and effici- 
ently in this way would be quite economical; fully 
maintained and written off over ten years the cost 
would be no more than £50, or equivalent, per average 
structure. 

These three lines of development will take some time 
fully to explore and implement. In the meanwhile 
YZARC and MAGIC, as they now exist, form a useful 
addition to the direct-methods armoury. 
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